A Gaussian Mixture Model for Image Segmentation and Enhancing Spectral Unmixing using Cross Entropy

نویسندگان

  • Saranya Devi
  • M. A. T. Figueiredo
چکیده

The main problem of segmentation in spectral images that containing mixed pixels is addressed. Linear spectral unmixing is a procedure by which mixed pixels are decomposed into a collection of pure spectra, or endmembers, with their corresponding proportions, or abundances. Markov random field (MRF) is used to model the spatial correlation between pixels and segment the image into multiple classes. Pixels in each class have the same spectral values. A new numerical method was introduced to estimate the abundance and its parameters by using EM-algorithm and Gaussian mixture model which is termed as EM-MAP algorithm. A new solver, namely cross entropy (CE) was proposed for hyperspectral image

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data

The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...

متن کامل

Scale-Based Gaussian Coverings: Combining Intra and Inter Mixture Models in Image Segmentation

By a “covering” we mean a Gaussian mixture model fit to observed data. Approximations of the Bayes factor can be availed of to judge model fit to the data within a given Gaussian mixture model. Between families of Gaussian mixture models, we propose the Rényi quadratic entropy as an excellent and tractable model comparison framework. We exemplify this using the segmentation of an MRI image volu...

متن کامل

Texture Segmentation Using Laplace Distribution-Based Wavelet-Domain Hidden Markov Tree Models

Multiresolution models such as the wavelet-domain hidden Markov tree (HMT) model provide a powerful approach for image modeling and processing because it captures the key features of the wavelet coefficients of real-world data. It is observed that the Laplace distribution is peakier in the center and has heavier tails compared with the Gaussian distribution. Thus we propose a new HMT model base...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017